​Research Interests

  • Applied Mathematics

  • Convex Geometry

  • Mathematical Modeling

  • Mathematical Optimization

  • Power Engineering

Livre

  1. Christian Bingane and Serge Katanga : Recueil d'exercices de trigonométrie. Kinshasa, DRC: Éditions Loyola, 2007.

Journal Papers

  1. Christian Bingane. Tight bounds on the maximal perimeter and the maximal width of convex small polygons. Journal of Global Optimization, 2022.

  2. Christian Bingane. Largest small polygons: A sequential convex optimization approach. Optimization Letters, 2022.

  3. Christian Bingane and Charles Audet. Tight bounds on the maximal perimeter of convex equilateral small polygons. Archiv der Mathematik, 119(3), 325-336, 2022.

  4. Christian Bingane and Charles Audet. The equilateral small octagon of maximal width. Mathematics of Computation, 91(336), 2027-2040, 2022.

  5. Christian Bingane. Tight bounds on the maximal area of small polygons: Improved Mossinghoff polygons. Discrete & Computational Geometry, 2022.

  6. Christian Bingane, Miguel F. Anjos, and Sébastien Le Digabel. Tight-and-cheap conic relaxation for the optimal reactive power dispatch problem. IEEE Transactions on Power Systems, 34(6), 4684-4693, 2019.

  7. Christian Bingane, Miguel F. Anjos, and Sébastien Le Digabel. Tight-and-cheap conic relaxation for the AC optimal power flow problem. IEEE Transactions on Power Systems, 33(6), 7181-7188, 2018.

Conference Paper

  1. Christian Bingane, Miguel F. Anjos, and Sébastien Le Digabel. CONICOPF: Conic relaxations for AC optimal power flow computations. 2021 IEEE Power & Energy Society General Meeting (PESGM), 1-5, IEEE, 2021.

Research Reports Submitted for Publication

  1. Christian Bingane and Michael J. Mossinghoff. Small polygons with large area. ArXiv Preprint, arXiv:2204.04547 [math.MG], 2022.

  2. Christian Bingane. Maximal perimeter and maximal width of a convex small polygon. Technical Report G-2021-33, Les cahiers du GERAD, 2021.

PhD Dissertation

  1. Christian Bingane. Application de l'optimisation conique au problème d'écoulement de puissance optimal. Polytechnique Montréal, 2019.

Other

  1. Christian Bingane, Miguel F. Anjos, and Sébastien Le Digabel. Tight-and-cheap conic relaxation for the AC optimal power flow problem. GERAD Newsletter, 16(2), 10-12, Jan 2020.

Communications

  1. Maximal perimeter of a convex small polygon. CORS/INFORMS International Conference, Vancouver, Canada, June 2022.

  2. Maximal perimeter of a convex small polygon. Optimization Days, Montreal, Canada, May 2022.

  3. CONICOPF: Conic relaxations for AC optimal power flow computations. 2021 IEEE Power & Energy Society General Meeting (PESGM), Washington, DC, USA, July 2021.

  4. Tight-and-cheap conic relaxation for the AC optimal power flow problem. Canadian Operational Research Society 61st Annual Conference, Saskatoon, Canada, May 2019.

  5. A tight-and-cheap conic relaxation with accuracy metrics for the ACOPF problem. Optimization Days, Montreal, Canada, May 2019.

  6. New conic relaxation for optimal reactive power dispatchOptimization Days, Montreal, Canada, May 2018.

  7. Tight-and-cheap conic relaxation for the AC optimal power flow problem“Meet a GERAD researcher!” Seminar, Montreal, Canada, April 2018.

  8. New conic relaxation for AC optimal power flow21st Conference of the International Federation of Operational Research Societies, Quebec City, Canada, July 2017.

  9. New conic relaxation for AC optimal power flow15th EUROPT Workshop on Advances in Continuous Optimization, Montreal, Canada, July 2017.