​Research Interests
-
Applied Mathematics
-
Convex Geometry
-
Mathematical Modeling
-
Mathematical Optimization
-
Power Engineering
Livre
-
Christian Bingane and Serge Katanga : Recueil d'exercices de trigonométrie. Kinshasa, DRC: Éditions Loyola, 2007.
Journal Papers
-
Christian Bingane and Michael J. Mossinghoff. Small polygons with large area. Journal of Global Optimization, 88(4), 1035-1050, 2024.
-
Christian Bingane. Tight bounds on the maximal area of small polygons: Improved Mossinghoff polygons. Discrete & Computational Geometry, 70(1), 236-248, 2023.
-
Christian Bingane. Largest small polygons: A sequential convex optimization approach. Optimization Letters, 17(2), 385-397, 2023.
-
Christian Bingane. Tight bounds on the maximal perimeter and the maximal width of convex small polygons. Journal of Global Optimization, 84(4), 1033-1051, 2022.
-
Christian Bingane and Charles Audet. Tight bounds on the maximal perimeter of convex equilateral small polygons. Archiv der Mathematik, 119(3), 325-336, 2022.
-
Christian Bingane and Charles Audet. The equilateral small octagon of maximal width. Mathematics of Computation, 91(336), 2027-2040, 2022.
-
Christian Bingane, Miguel F. Anjos, and Sébastien Le Digabel. Tight-and-cheap conic relaxation for the optimal reactive power dispatch problem. IEEE Transactions on Power Systems, 34(6), 4684-4693, 2019.
-
Christian Bingane, Miguel F. Anjos, and Sébastien Le Digabel. Tight-and-cheap conic relaxation for the AC optimal power flow problem. IEEE Transactions on Power Systems, 33(6), 7181-7188, 2018.
Conference Paper
-
Christian Bingane, Miguel F. Anjos, and Sébastien Le Digabel. CONICOPF: Conic relaxations for AC optimal power flow computations. 2021 IEEE Power & Energy Society General Meeting (PESGM), 1-5, IEEE, 2021.
Research Report Submitted for Publication
-
Christian Bingane. Maximal perimeter and maximal width of a convex small polygon. Technical Report G-2021-33, Les cahiers du GERAD, 2021.
PhD Dissertation
-
Christian Bingane. Application de l'optimisation conique au problème d'écoulement de puissance optimal. Polytechnique Montréal, 2019.
Other
-
Christian Bingane, Miguel F. Anjos, and Sébastien Le Digabel. Tight-and-cheap conic relaxation for the AC optimal power flow problem. GERAD Newsletter, 16(2), 10-12, Jan 2020.
Communications
-
Maximal perimeter of a convex small polygon. 2023 CMS Summer Meeting, Ottawa, Canada, June 2023.
-
Maximal perimeter of a convex small polygon. CORS/INFORMS International Conference, Vancouver, Canada, June 2022.
-
Maximal perimeter of a convex small polygon. Optimization Days, Montreal, Canada, May 2022.
-
CONICOPF: Conic relaxations for AC optimal power flow computations. 2021 IEEE Power & Energy Society General Meeting (PESGM), Washington, DC, USA, July 2021.
-
Tight-and-cheap conic relaxation for the AC optimal power flow problem. Canadian Operational Research Society 61st Annual Conference, Saskatoon, Canada, May 2019.
-
A tight-and-cheap conic relaxation with accuracy metrics for the ACOPF problem. Optimization Days, Montreal, Canada, May 2019.
-
New conic relaxation for optimal reactive power dispatch. Optimization Days, Montreal, Canada, May 2018.
-
Tight-and-cheap conic relaxation for the AC optimal power flow problem. “Meet a GERAD researcher!” Seminar, Montreal, Canada, April 2018.
-
New conic relaxation for AC optimal power flow. 21st Conference of the International Federation of Operational Research Societies, Quebec City, Canada, July 2017.
-
New conic relaxation for AC optimal power flow. 15th EUROPT Workshop on Advances in Continuous Optimization, Montreal, Canada, July 2017.